Nitrate ammonification in mangrove soils: a hidden source of nitrite?

نویسندگان

  • Melike Balk
  • Anniet M. Laverman
  • Joost A. Keuskamp
  • Hendrikus J. Laanbroek
چکیده

Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria

Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissu...

متن کامل

Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate

The process of nitrate reduction via nitrite controls the fate and bioavailability of mineral nitrogen within ecosystems; i.e., whether it is retained as ammonium (ammonification) or lost as nitrous oxide or dinitrogen (denitrification). Here, we present experimental evidence for a novel pathway of microbial nitrate reduction, the reverse hydroxylamine:ubiquinone reductase module (reverse-HURM)...

متن کامل

Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE.

During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as ...

متن کامل

Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus).

Induction, energy gain, effect on growth, and interaction of nitrate and nitrite reduction of Bradyrhizobium sp. (Lupinus) USDA 3045 were characterized. Both nitrate and nitrite were reduced in air, although nitrite reduction was insensitive to ammonium inhibition. Anaerobic reduction of both ions was shown to be linked with energy conservation. A dissimilatory ammonification process was detect...

متن کامل

The impact of agricultural soil usage on activity and abundance of ammonifying bacteria in selected soils from Poland

The aim of the study was to demonstrate the impact of soil agricultural usage on the abundance of ammonifying bacteria (AB) and their activity, expressed as arginine ammonification (AA). Five agriculturally exploited types of soils (FAO): Haplic Luvisol, Brunic Arenosol, Mollic Gleysol, Eutric Fluvisol, and Rendzina Leptosol were studied. The controls were non-agricultural soils of the same typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015